27th & 28th January 2025
Radisson Hotel & Conference Centre, London Heathrow
23rd & 24th June 2025
Hilton Deansgate, Manchester
Search
Close this search box.
Prosure360
energy-management-summit-advert
Kingspan
energy-management-summit-advert
JLLT
jllt-banner-advert

Buildings and human induced vibration – The risks & the solutions

Whether it’s a building or bridge, human footfall needs to be considered by engineers working on the project to ensure that the end result for users is safe and comfortable (remember the Millennium Bridge ‘wobble’!). Oasys Software explains why human induced vibration is an important consideration…

Fluttering and resonance

Vibrations can affect structures in a wide range of ways. Two of the main ways are resonance and aeroelastic fluttering.

When Object A vibrates at the same natural frequency as Object B, this is known as resonance. As a result, object B resonates with this and will begin to vibrate too. Think singing to break a wine glass! Although the person singing isn’t touching the glass, the vibrations of their voice are resonating with the glass’s natural frequency, causing this vibration to get stronger and stronger and eventually, break the glass.

Aeroelastic flutter differs slightly; for example, a force is applied to Object B, causing it to shake. It’s not necessarily at the same frequency as Object B’s natural vibration, but it makes Object B move all the same.

When an object resonates, it is technically fluttering too. But not everything that flutters is necessarily resonating. This is how confusion over disasters such as the Tacoma Bridge collapse occur — for a long time, and to this day, the event is used as a textbook example of resonance. However, it’s been argued that the bridge’s collapse wasn’t caused by resonance, but by fluttering.

Fluttering also occurs with human induced vibrations, and an example of this is when human movement is applying force, causing the structure to vibrate. Some instances would also see resonation happening too, but it wouldn’t be a certainty.

Engineers have to ensure that their designs reduce the damage or discomfort caused by either fluttering or resonating.

The downsides

The structure and users within a building can be compromised when fluttering or resonation occurs, and it can have a range of impacts:

  • Human health suffering. Research has found that vibrations in buildings and structures can cause depression and even motion sickness in inhabitants. Buildings naturally respond to external factors such as the wind or human footfall within. This low-frequency vibration can be felt, even subconsciously, by people. It has been argued that modern designs featuring thinner floor slabs and wider spacing in column design mean that these new builds are not as effective at dampening vibrations as older buildings are.
  • Jeopardising structural integrity. Eventually, the build-up of constant vibrations on a structure can lead to structural integrity being compromised. A worse-case scenario would be the complete collapse of said structure.
  • Swaying bridges. The Millennium Bridge is one of the best examples of resonance caused by human induced vibrations and fluttering. As people walked across the bridge, the vibrations and swaying caused oscillations in the bridge. Everyone crossing the bridge would then sway at the same time to avoid falling over, resulting in a cycle of increasing and amplifying the swaying effect.
  • Jeopardise integrity of sensitive equipment. Depending on what the building is used for, what is within and what can be affected by the vibrations of those inside the building. Universities, for example, may have sensitive equipment whose accuracy and performance could be damaged by vibrations.

How software can help

Modern designs that favour thinner slabs and wider column design and spacing tend to be susceptible to all forms of vibration, whether it is human-induced or otherwise.

At the design stage, it is important for engineers to use appropriate structural analysis software to test footfall on a design and see the resulting vibrations.

Vibrations are inevitable, but engineers must account for a wide range of catalysts that trigger vibrations in a structure, such as human footfall, adapting their overall design accordingly.

Sources:

https://www.oasys-software.com/news/analysing-vibration-with-gsa/

https://www.oasys-software.com/case-studies/footfall-analysis-singapores-helix-bridge/

https://www.oasys-software.com/case-studies/princeton-university-frick-laboratory/

http://homepage.tudelft.nl/p3r3s/MSc_projects/reportRoos.pdf

https://www.forbes.com/sites/startswithabang/2017/05/24/science-busts-the-biggest-myth-ever-about-why-bridges-collapse/#1b9e3b001f4c

https://phys.org/news/2017-03-impact-bridges-skyscrapers-human-health.html

https://www.quora.com/Whats-the-difference-between-resonance-and-aeroelastic-flutter

https://www.telegraph.co.uk/science/2017/03/19/wobbly-skyscrapers-may-trigger-motion-sickness-depression-warn/

YOU MIGHT ALSO LIKE

Leave a Reply

Your email address will not be published. Required fields are marked *